Xích vĩ của Mặt Trời khi nhìn từ Trái Đất Vị_trí_của_Mặt_Trời

Đường đi của Mặt Trời trên thiên cầu trong một ngày đối với người quan sát ở vĩ độ 56°B. Đường đi của Mặt Trời thay đổi với xích vĩ của nó trong một năm. Các giao điểm của các đường cong với trục hoành thể hiện góc phương vị theo độ tính từ phía Bắc của nơi mà Mặt Trời mọc và lặn.

Tổng quan

Mặt Trời có xu hướng di chuyển lệch dần về phía bắc trong mùa xuânBán cầu Bắc, và tiếp xúc với xích đạo thiên cầu vào tháng Ba. Xích vĩ của nó đạt cực đại bằng góc nghiêng của trục Trái Đất (23,44°)[6][7] vào ngày Hạ chí, sau đó giảm dần cho đến khi đạt đến mức cực tiểu (−23,44°) vào ngày Đông chí, khi giá trị xích vĩ là là âm độ nghiêng trục. Sự thay đổi này tạo ra các mùa.

Đường đồ thị thể hiện xích vĩ của Mặt Trời trong một năm trông giống như một sóng sin với biên độ 23,44°, nhưng một bầu của sóng dài hơn vài ngày so với bầu còn lại, với một vài khác biệt khác.

Hiện tượng sau sẽ xảy ra giả sử Trái Đất là một hình cầu hoàn hảo, di chuyển trên quỹ đạo tròn quanh Mặt Trời và nếu trục của nó nghiêng góc 90°, khi đó trục đó sẽ nằm trên mặt phẳng quỹ đạo (tương tự Thiên Vương Tinh). Vào một ngày trong năm, Mặt Trời sẽ lên thiên đỉnh tại Bắc Cực, do đó xích vĩ của nó lúc đó sẽ là +90°; nói cách khác, hạ điểm Mặt Trời đang ở Bắc Cực. Trong vài tháng tới, hạ điểm Mặt Trời sẽ di chuyển về phía Nam Cực, vượt qua các vòng vĩ độ với tốc độ không đổi, do đó xích vĩ của Mặt Trời sẽ giảm tuyến tính với thời gian. Cuối cùng, Mặt Trời sẽ ở ngay trên đỉnh đầu tại Nam Cực, với xích vĩ −90°; sau đó nó lại sẽ bắt đầu di chuyển về phía Bắc với tốc độ không đổi. Do đó, đồ thị xích vĩ Mặt Trời nhìn từ Trái Đất với độ nghiêng cao này, sẽ giống như sóng tam giác chứ không phải là sóng hình sin, một đường gấp khúc giữa cộng và trừ 90°, với các đoạn thẳng đan xen giữa hai biên cực đại và cực tiểu.

Nếu độ nghiêng trục giảm từ 90° thì biên độ của xích vĩ cũng giảm và luôn bằng với độ nghiêng trục. Ngoài ra, hình dạng của lân cận biên cực đại và biên cực tiểu trên đồ thị sẽ trở nên ít sắc (nhọn) hơn, dần dần bị cong để giống với hình dạng các biên cực đại và cực tiểu của sóng hình sin. Tuy nhiên, ngay cả khi độ nghiêng trục bằng với độ nghiêng trục của Trái Đất trong thực tế, biên cực đại và cực tiểu vẫn còn khá nhọn hơn so với sóng hình sin.

Trong thực tế, quỹ đạo của Trái Đấthình elip, dẫn đến hiện tượng sau đây: Trái Đất di chuyển nhanh hơn xung quanh Mặt Trời khi nó gần điểm cận nhật, vào đầu tháng 1, hơn là gần điểm viễn nhật, vào đầu tháng 7. Điều này làm cho các quá trình như sự thay đổi của xích vĩ Mặt Trời xảy ra nhanh hơn vào tháng 1 so với tháng 7. Trên biểu đồ, điều này làm cho biên cực tiểu trông nhọn hơn so với biên cực đại. Ngoài ra, do điểm cận nhật và viễn nhật không xảy ra vào các ngày chính xác như các điểm chí, nên biên cực đại và biên cực tiểu hơi bất đối xứng: tỉ lệ thay đổi ở thời điểm trước và sau không hoàn toàn bằng nhau.

Do đó, biểu đồ xích vĩ Mặt Trời rõ ràng là khác biệt theo nhiều cách so với một sóng hình sin. Tính toán xích vĩ chính xác cần xét đến một số điều phức tạp, được trình bày dưới đây.

Tính toán cụ thể

Xích vĩ của Mặt Trời, δ☉, là góc giữa các tia của Mặt Trời và mặt phẳng xích đạo của Trái Đất. Độ nghiêng trục quay của Trái Đất (được các nhà thiên văn học gọi là độ nghiêng của hoàng đạo) là góc giữa trục Trái Đất và đường thẳng vuông góc với quỹ đạo của Trái Đất. Độ nghiêng trục của Trái Đất thay đổi chậm trong hàng ngàn năm nhưng giá trị hiện tại của nó vào khoảng ε = 23° 26' là gần như không đổi, do đó, sự thay đổi xích vĩ Mặt Trời trong một năm gần như tương đương với năm sau.

  • Tại các điểm chí, góc giữa các tia của Mặt Trời và mặt phẳng xích đạo của Trái Đất đạt giá trị cực đại là 23° 26'. Do đó, δ☉ = +23°26' tại ngày hạ chí ở Bán cầu Bắc và δ☉ =−23°26' tại ngày hạ chí ở Bán cầu Nam.
  • Tại thời điểm của mỗi điểm phân, tâm của Mặt Trời được trông thấy đi qua đường xích đạo thiên cầu và do đó δ☉ bằng 0°.

Xích vĩ của Mặt Trời tại bất kỳ ngày nào có thể được tính bằng công thức chính tắc:

δ ⊙ = arcsin ⁡ [ sin ⁡ ( − 23.44 ∘ ) ⋅ sin ⁡ ( E L ) ] {\displaystyle \delta _{\odot }=\arcsin \left[\sin \left(-23.44^{\circ }\right)\cdot \sin \left(EL\right)\right]}

Trong đó EL là giá trị kinh độ hoàng đạo (về cơ bản, chính là vị trí của Trái Đất trong quỹ đạo của nó). Do độ lệch tâm quỹ đạo của Trái Đất nhỏ, nên quỹ đạo của nó có thể được coi gần đúng như là một đường tròn, với sai số chỉ lên tới 1°. Xấp xỉ đường tròn có nghĩa là tại các điểm phân, EL sẽ đi trước 90° so với các điểm chí trong quỹ đạo Trái Đất, do đó: sin(EL) có thể được viết là sin(90+NDS) = cos(NDS), trong đó NDS là số ngày tính từ sau ngày đông chí. Bằng cách sử dụng phép tính gần đúng arcsin[sin(d)·cos(NDS)] ≈ d·cos(NDS), thu được công thức thường được sử dụng sau đây:

δ ⊙ = − 23.44 ∘ ⋅ cos ⁡ [ 360 ∘ 365 ⋅ ( N + 10 ) ] {\displaystyle \delta _{\odot }=-23.44^{\circ }\cdot \cos \left[{\frac {360^{\circ }}{365}}\cdot \left(N+10\right)\right]}

Trong đó N là số ngày trong năm bắt đầu với N = 0 vào lúc nửa đêm theo Giờ Quốc tế (UT) khi ngày 1 tháng 1 bắt đầu (tức là số thứ tự ngày trong năm trừ đi 1). Số 10 trong (N + 10) là số ngày gần đúng kể từ sau ngày Đông chí đến ngày 1 tháng 1. Vấn đề là, phương trình này đánh giá quá cao xích vĩ gần điểm phân tháng 9 lên tới +1,5°. Bản thân việc xấp xỉ hàm sin đã gây ra sai số lên tới 0,26° và không được khuyến nghị để sử dụng trong các ứng dụng về năng lượng mặt trời.[2] Công thức Spencer năm 1971[8] (dựa trên chuỗi Fourier) cũng không được khuyến nghị vì có sai số lên tới 0,28°.[9] Một sai số bổ sung lên tới 0,5° có thể xảy ra đối với tất cả các phương trình tại xung quanh các điểm phân nếu không sử dụng số thập phân khi chọn N để điều chỉnh thời gian sau nửa đêm (UT) vào đầu ngày hôm đó. Vì vậy, phương trình trên có thể có sai số tổng cộng lên tới 2,0°, gấp khoảng bốn lần chiều rộng góc của Mặt Trời, tùy thuộc vào cách nó được sử dụng.

Xích vĩ có thể được tính toán chính xác hơn nếu không thực hiện hai phép tính gần đúng đó, sử dụng các tham số của quỹ đạo Trái Đất để ước tính chính xác hơn EL:

δ ⊙ = arcsin ⁡ [ sin ⁡ ( − 23.44 ∘ ) ⋅ cos ⁡ ( 360 ∘ 365.24 ( N + 10 ) + 360 ∘ π ⋅ 0.0167 sin ⁡ ( 360 ∘ 365.24 ( N − 2 ) ) ) ] {\displaystyle \delta _{\odot }=\arcsin \left[\sin \left(-23.44^{\circ }\right)\cdot \cos \left({\frac {360^{\circ }}{365.24}}\left(N+10\right)+{\frac {360^{\circ }}{\pi }}\cdot 0.0167\sin \left({\frac {360^{\circ }}{365.24}}\left(N-2\right)\right)\right)\right]}

có thể được đơn giản hóa bằng cách tính trước các hằng số thành:

δ ⊙ = − arcsin ⁡ [ 0.39779 cos ⁡ ( 0.98565 ∘ ( N + 10 ) + 1.914 ∘ sin ⁡ ( 0.98565 ∘ ( N − 2 ) ) ) ] {\displaystyle \delta _{\odot }=-\arcsin \left[0.39779\cos \left(0.98565^{\circ }\left(N+10\right)+1.914^{\circ }\sin \left(0.98565^{\circ }\left(N-2\right)\right)\right)\right]}

N là số ngày kể từ lúc nửa đêm (UT) khi ngày 1 tháng 1 bắt đầu (tức là số thứ tự ngày trong năm −1) và có thể bao gồm số thập phân để điều chỉnh với thời gian địa phương muộn hơn hoặc sớm hơn trong ngày. Số 2, trong (N-2), là số ngày gần đúng sau ngày 1 tháng 1 tới ngày điểm cận nhật của Trái Đất. Con số 0,0167 ở trên là giá trị hiện tại của độ lệch tâm của quỹ đạo Trái Đất. Độ lệch tâm thay đổi rất chậm theo thời gian, nhưng đối với những ngày khá gần với hiện tại, nó có thể được coi là không đổi. Các sai số lớn nhất trong phương trình này nhỏ hơn ±0,2°, nhưng có thể nhỏ hơn ±0,03° trong một năm nhất định nếu số 10 được hiệu chỉnh tăng hoặc giảm thêm bằng số ngày phân số xác định bởi thời điểm chính xác của ngày Đông chí năm trước xảy ra bao lâu trước hoặc sau trưa ngày 22 tháng 12. Những độ chính xác này được so sánh với các tính toán tiên tiến của NOAA[10][11] dựa trên thuật toán Jean Meeus 1999 với độ chính xác trong khoảng 0,01°.[12]

(Công thức trên liên quan đến một phép tính khá đơn giản và chính xác của Phương trình thời gian.)

Các thuật toán phức tạp hơn[13][14] tìm cách tính cực kỳ chính xác các thay đổi đối với kinh độ hoàng đạo bằng cách sử dụng thêm vào một vài số hạng, bên cạnh việc hiệu chỉnh độ lệch tâm bậc nhất ở trên. Các thuật toán cũng hiệu chỉnh độ nghiêng 23,44° thay đổi rất ít theo thời gian. Sự hiệu chỉnh cũng có thể bao gồm các tác động của Mặt Trăng bù vào vị trí của Trái Đất đối với tâm quỹ đạo xung quanh Mặt Trời của hệ. Sau đã khi có được xích vĩ đối với tâm Trái Đất, một sự hiệu chỉnh tiếp theo cho thị sai được áp dụng, điều này phụ thuộc vào khoảng cách giữa người quan sát và tâm Trái Đất là bao xa. Hiệu chỉnh này nhỏ hơn 0,0025°. Sai số trong việc tính toán vị trí tâm Mặt Trời giờ chỉ có thể nhỏ hơn 0,00015°. Để so sánh, nó thấp hơn rất nhiều chiều rộng góc biểu kiến của Mặt Trời là khoảng 0,5°.

Khúc xạ khí quyển

Các tính toán xích vĩ được mô tả ở trên chưa bao gồm các hiệu ứng khúc xạ ánh sáng trong khí quyển, chúng khiến cho độ cao góc biểu kiến của Mặt Trời mà người quan sát nhìn thấy cao hơn độ cao góc thực tế, đặc biệt là khi Mặt Trời ở độ cao thấp gần đường chân trời.[2] Ví dụ, khi Mặt Trời ở độ cao 10°, nó trông như ở mức 10,1°. Xích vĩ cùng với xích kinh của Mặt Trời có thể được sử dụng để tính góc phương vị và độ cao thực sự của nó, sau đó có thể được điều chỉnh về khúc xạ để đưa ra vị trí biểu kiến của nó trên bầu trời.[2][11][15]

Tài liệu tham khảo

WikiPedia: Vị_trí_của_Mặt_Trời http://www.assembla.com/spaces/sun_follower/docume... http://www.mail-archive.com/sundial@uni-koeln.de/m... http://www.meteoexploration.com/R/insol/index.html http://www.jgiesen.de/elevaz/basics/meeus.htm http://www.imcce.fr/en/ephemerides/formulaire/form... http://ssd.jpl.nasa.gov/?horizons http://www.jpl.nasa.gov/index.cfm http://www.esrl.noaa.gov/gmd/ http://www.esrl.noaa.gov/gmd/grad/solcalc http://www.esrl.noaa.gov/gmd/grad/solcalc/